个人简介Personal Profile
本科和博士毕业于华中师范大学化学学院,获华中师范大学优秀博士论文;2011年-2014年在美国马里兰大学从事博士后研究;2014年加入西北大学化学与材料科学学院,任教授、博导。独立工作期间,先后荣获陕西省青年百人计划、Thieme Chemistry Journals Award、教育部霍英东青年教师基金、陕西省杰出青年科学基金、国家自然科学基金委优秀青年科学基金;主持包括国家自然科学基金面上项目、陕西省自然科学基金面上项目和陕西省教育厅重点科研计划等科研项目。主要围绕基于大环分子体系的仿生超分子化学领域开展研究工作,发展了在生物兼容环境中仿生超分子体系的构建及其在生物分子的仿生识别行为、手性传递与放大机制以及光催化转化与光动力治疗等方面的应用;迄今以第一或通讯作者发表J. Am. Chem. Soc., Angew. Chem. Int. Ed., CCS Chem.等期刊论文五十余篇;相关研究成果获陕西高等学校科学技术研究优秀成果一等奖(排名第一)和陕西省自然科学一等奖(排名第三)。
学习和工作经历:
2014年-今:教授,博导,西北大学,化学与材料科学学院。
2017年-2018年:国家公派访问学者,美国犹他大学,化学系,合作导师:Peter Stang教授。
2011年-2014年:博士后,美国马里兰大学,化学与生物化学系,合作导师:Lyle Isaacs教授。
2006年-2011年:理学博士(有机化学),华中师范大学,化学学院,导师:吴安心教授。
2002年-2006年:理学学士(应用化学),华中师范大学,化学学院。
基金项目:
国家自然科学基金委优秀青年科学基金
陕西省杰出青年科学基金
教育部霍英东高校青年教师基金
陕西省第八批百人计划(青年项目)
荣誉奖项:
陕西省优秀博士学位论文指导教师
全国超分子化学学术讨论会学术新星奖(全国大环化学暨超分子化学学术讨论会学术委员会和Angewandte Chemie编委会)
大环芳烃超分子化学学术新星奖(2020年度,第十届大环芳烃超分子化学学术研讨会)
第四届陕西省化学优秀青年奖(陕西省化学会)
度西北大学科研奖(团队奖)
陕西高等学校科学技术研究优秀成果一等奖(排名第一)
陕西省自然科学一等奖(排名第三)
西北大学2021年度科研奖(个人奖)
西北大学优秀博士学位论文指导教师
西北大学优秀硕士学位论文指导教师
西北大学2019-2020教学年度优秀教师
Thieme Chemistry Journals Award
华中师范大学优秀博士论文
学术兼职:
中国化学会第三十一届理事会超分子化学专业委员会委员
中国化学会高级会员
中国感光学会青年理事会理事
Chinese Chemical Letter高级编委
Aggregate青年顾问编委
研究方向:
1、新颖水溶性阳离子型荧光大环分子的合成及生物分子识别研究;
2、基于大环分子识别的刺激响应型超分子组装体系的建立与应用;
3、基于大环的超分子框架材料:构筑、性质研究以及功能的应用。
近年来,课题组针对当前生物分子识别准确性差、手性信息响应缺失等难点和瓶颈问题,通过开发水溶性大环超分子人工体系,系统开展了生物分子识别与手性响应机制的新原理和新方法研究,提出了自适应手性识别与响应的机理,实现了氨基酸、核苷、多肽、蛋白质以及DNA等生物分子的选择性识别与手性信号响应,为生物分子检测与监测机制研究建立了一类人工仿生识别的超分子体系。
毕业学生(就业或升学单位):
博士毕业生:
2019年:鱼洋(西安交通大学)
2021年:李亚雯(陕西省、西北大学优秀博士学位论文,陕西省、西北大学优秀毕业生,西安交通大学)、王聘聘(西北大学优秀毕业生,枣庄学院)
2022年:程琳(西北大学)
2023年:段红红(西北大学优秀毕业生,保密单位)
硕士毕业生:
2017年:李杰
2018年:王聘聘(西北大学优秀毕业生,西北大学)
2019年:张蓓琳(西北工业大学)
2020年:李晨阳(西北大学优秀毕业生,陕西能源职业技术学院)、段红红(西北大学优秀硕士学位论文,西北大学优秀毕业生,西北大学)
2021年:年浩(南方科技大学)、张海洋(西北大学优秀毕业生,陕西隆基乐叶光伏科技有限公司)、秦春艳(山西稷王中学)
2022年:段燕娟(天津凯莱英医药)、王玲
2023年:田萍、马焕青
2024年:宋晓雯(山东鲁抗医药股份有限公司)、郭智慧(威斯派尔半导体技术有限公司)、姚诺锦(比亚迪汽车有限公司)
本科毕业生:
2020年:敖宛彤(丹麦哥本哈根大学),金慧琳(比利时布鲁塞尔自由大学)
2024年:韩京娱(中国科学院理化技术研究所)
科研成果:
独立工作(2014-今):
59. Li, Q.; Yan, C.; Zhang, P.; Wang, P.; Wang, K.; Yang, W.; Cheng, L.; Dang, D.; Cao, L.,* Tetraphenylethene-Based Molecular Cage with Coenzyme FAD: Conformationally Isomeric Complexation toward Photocatalysis-Assisted Photodynamic Therapy. J. Am. Chem. Soc. 2024, 146, 30933-30946.
https://pubs.acs.org/doi/10.1021/jacs.4c09508
58. Li, Q.; Zhang, P.; Wang, P.; Yan, C.; Wang, K.; Yang, W.; Dang, D.;* Cao, L.,* A Combination of Covalent and Noncovalent Restricted-Intramolecular-Rotation Strategy for Supramolecular AIE-Type Photosensitizer toward Photodynamic Therapy. Aggregate, 2024, e676.
https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.676
57. Li, J.; Li, R.; Liu, J.; Liu, J.-Q.;* Xu, J.; Zhou, X.; Zhang, Y.; Wang, K.; Lei, L.; Xie, G.; Wang, F.; Yang, Y.;* Cao, L.*, A TOC- and Deposition-Free Electrochromic Window Driven by Redox Flow Battery. Chin. Chem. Lett. 2024, 35, 110355.
https://www.sciencedirect.com/science/article/pii/S100184172400874X
56. Nian, H.; Wang, S.-M.; Wang, Y.-F.; Zheng, Y.-T.; Zheng, L.-S.; Wang, X.; Yang, L.-P.;* Jiang, W.;* Cao, L.,* Selective Recognition and Enrichment of C70 over C60 Using an Anthracene-Based Nanotube. Chem. Sci. 2024, 15, 10214-10220.
https://pubs.rsc.org/en/content/articlelanding/2024/sc/d4sc02814g
55. Yang, T.; Duan, H.; Nian, H.; Wang, P.; Yan, C.; Cao, F.; Li, Q.; Cao, L.* Unraveling the Structure-Chirality Sensing Relationship between Achiral Anthracene-Based Tetracationic Nanotubes and Nucleosides in Aqueous Host-Guest Complexation. Biosens. Bioelectron. 2024, 258, 116342.
https://www.sciencedirect.com/science/article/pii/S0956566324003476
54. Zhao, L.; Cheng L.; Yang, Y.; Wang, P.; Tian, P.; Yang, T.; Nian, H.; Cao, L.* Biomimetic Hydrogen-Bonded G•C•G•C Quadruplex within a Tetraphenylethene-Based Octacationic Spirobicycle in Water. Angew. Chem. Int. Ed. 2024, e202405150. (Very Important Paper)
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202405150
53. Yan, C.; Li, Q.; Wang, K.; Yang, W.; Han, J.; Li, Y.; Dong, Y.; Chu, D.; Cheng, L.; Cao, L.* “Gear-Driven”-Type Chirality Transfer of Tetraphenylethene-Based Supramolecular Organic Frameworks for Peptides in Water. Chem. Sci. 2024, 15, 3758-3766.
https://pubs.rsc.org/en/content/articlelanding/2024/sc/d3sc06349f
52. Dong, Y.; Cheng, L.*; Duan, Y.; Xu, H.; Dong, R.; Guo, B.; Cao, L.* Dual Responses of Fluorescence and Circular Dichroism for Antibiotics by a Cationic Cage in Water. Synlett. 2023, 35, 109-112.
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/a-2109-0055
51. Duan, H.; Yang, T.; Li, Q.; Cao, F.; Wang, P.; Cao, L.* Recognition and chirality sensing of guanosine-containing nucleotides by an achiral tetraphenylethene-based octacationic cage in water. Chin. Chem. Lett. 2023, 108878.
https://www.sciencedirect.com/science/article/abs/pii/S1001841723006976
50. Yan, C.; Li, Q.; Miao, X.; Zhao, Y.; Li, Y.; Wang, P.; Wang, K.; Duan, H.; Zhang, L.; Cao, L.* Chiral Adaptive Induction of an Achiral Cucurbit[8]uril-Based Supramolecular Organic Framework by Dipeptides in Water. Angew. Chem. Int. Ed. 2023, 62, e202308029. (HOT PAPER)
https://onlinelibrary.wiley.com/doi/10.1002/anie.202308029
49. Wang, L.; Guo. Z.; Cheng, L.*; Nian, H.; Yao, N.; Zhao, Y.; Liu, K.*; Cao, L.* Tetraphenylethene-linked octacationic dicyclophanes with enhanced recognition of NADH over NAD+ in water. Dyes and Pigments, 2023, 216, 111364.
https://www.sciencedirect.com/science/article/pii/S0143720823002905
48. Cheng, L.; Tian, P.; Duan, H.; Li, Q.; Song, X.; Li, A.; Cao, L.* Chiral Adaptive Recognition with Sequence Specificity of Aromatic Dipeptides in Aqueous Solution by an Achiral Cage. Chem. Sci. 2023, 14, 833-842.
https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc05854e
47. Cao, F.; Duan, H.; Li, Q.; Cao, L.* A Tetraphenylethene-Based Hexacationic Molecular Cage with an Open Cavity. Chem. Commun. 2022, 58, 13389-13392.
https://pubs.rsc.org/en/content/articlelanding/2022/cc/d2cc05153b
46. Duan, Y.; Wang, J.; Cheng, L.; Duan, H.; Tian, P.; Zhang, Y.*; Cao, L.* Fluorescent, Chirality-Responsive, and Water-Soluble Cage as a Multifunctional Molecular Container for Drug Delivery. Org. & Biomole. Chem. 2022, 20, 3998-4005.
https://pubs.rsc.org/en/content/articlelanding/2022/ob/d2ob00520d
45. Li, Y.; Yan, C.; Li, Q.; Cao, L.* Successive Construction of Cucurbit[8]uril-Based Covalent Organic Frameworks from a Supramolecular Organic Framework through Photochemical Reactions in Water. Sci. China Chem. 2022, 65, 1279-1285.
http://engine.scichina.com/doi/10.1007/s11426-022-1231-5
44. Duan, H.; Cao, F.; Zhang, M.; Gao, M.; Cao, L.* On-Off-On Fluorescence Detection for Biomolecules by a Fluorescent Cage through Host-Guest Complexation in Water. Chin. Chem. Lett. 2022, 33, 2459-2463.
https://www.sciencedirect.com/science/article/pii/S1001841721009426
43. Cheng, L.; Tian, P.; Li, Q.; Li, A.; Cao, L.* Stabilization and Multiple-Responsive Recognition of Natural Base Pairs in Water by a Cationic Cage. CCS Chem. 2022, 4, 2914-2920.
https://www.chinesechemsoc.org/doi/10.31635/ccschem.021.202101584
42. Wang, P.; Liu, K.; Ma, H.; Nian, H.; Li, Y.; Li, Q.; Cheng, L.; Cao, L.* Synthesis and Aqueous Anion Recognition of Imidazolium-Based Nonacationic Cup. Chem. Commun. 2021, 57, 13377-13380.
https://pubs.rsc.org/en/content/articlehtml/2021/CC/D1CC05603D
41. Nian, H.; Cheng, L.; Wang, L.; Zhang, H.; Wang, P.; Li, Y.; Cao, L.* Hierarchical Two-Level Supramolecular Chirality of an Achiral Anthracene-Based Tetracationic Nanotube in Water. Angew. Chem. Int. Ed. 2021, 60, 15354-15358.
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202105593
40. Qin, C.; Li, Y.; Li, Q.; Yan, C.; Cao, L.* Aggregation-Induced Emission and Self-Assembly of Functional Tetraphenylethene-Based Tetracationic Dicyclophanes for Selective Detection of ATP in Water. Chin. Chem. Lett. 2021, 32, 3531-3534.
https://www.sciencedirect.com/science/article/pii/S1001841721003107
39. Xu, W.; Duan, H.; Chang, X.; Wang, G.; Hu, D.; Wang, Z.; Cao, L.*; Fang, Y.* Polyanion and Anionic Surface Monitoring in Aqueous Medium Enabled by an Ionic Host-Guest Complex. Sensors and Actuators B: Chemical, 2021, 340, 129916.
https://www.sciencedirect.com/science/article/pii/S0925400521004858
38. Duan, H.; Cao, F.; Hao, H.; Bian, H.; Cao, L.* Efficient Photoinduced Energy and Electron Transfers in a Tetraphenylethene-Based Octacationic Cage through Host-Guest Complexation. ACS Appl. Mater. & Interfaces 2021, 13, 16837-16845.
https://pubs.acs.org/doi/10.1021/acsami.1c01867
37. Zhang, H.; Cheng, L.; Nian, H.; Du, J.; Chen, T.; Cao, L.* Adaptive Chirality of Achiral Tetraphenylethene-Based Tetracationic Cyclophanes with Dual Responses of Fluorescence and Circular Dichroism in Water. Chem. Commun. 2021, 57, 3135-3138.
https://doi.org/10.1039/d1cc00303h
36. Li, Y.; Li, Q.; Miao, X.; Qin, C.; Chu, D.; Cao, L.* Adaptive Chirality of an Achiral Cucurbit[8]uril-Based Supramolecular Organic Framework for Chirality Induction in Water. Angew. Chem. Int. Ed. 2021, 60, 6744-6751.
https://doi.org/10.1002/anie.202012681
35. Cheng, L.; Liu, K.; Duan, Y.; Duan, H.; Li, Y.; Gao, M.; Cao, L.* Adaptive Chirality of an Achiral Cage: Chirality Transfer, Induction, and Circularly Polarized Luminescence Through Aqueous Host-Guest Complexation. CCS Chem. 2021, 3, 2749-2763.
https://www.chinesechemsoc.org/doi/abs/10.31635/ccschem.020.202000509
34. Duan, H.; Li, Y.; Li, Q.; Wang, P.; Liu, X.; Cheng, L.; Yu, Y.; Cao, L.* Host-Guest Recognition and Fluorescence of a Tetraphenylethene-Based Octacationic Cage. Angew. Chem., Int. Ed. 2020, 59, 10101-10110.
https://doi.org/10.1002/anie.201912730
33. Wang, P.; Miao, X.; Meng, Y.; Wang, Q.; Wang, J.*; Duan, H.; Li, Y.; Li, C.; Liu, J.; Cao, L.* Tetraphenylethene-Based Supramolecular Coordination Frameworks with Aggregation-Induced Emission for Artificial Light-Harvesting System. ACS Appl. Mater. & Interfaces 2020, 12, 22630-22639.
https://pubs.acs.org/doi/pdf/10.1021/acsami.0c04917
32. Li, Y.; Qin, C.; Li, Q.; Wang, P.; Miao, X.; Jin, H.; Ao, W.; Cao, L.* Supramolecular Organic Frameworks with Controllable Shape and Aggregation-Induced Emission for Tunable Luminescent Materials Through Aqueous Host-Guest Complexation. Adv. Opt. Mater. 2020, 1902154.
https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201902154
31. Nian, H.; Li, A.; Li, Y.; Cheng, L.; Wang, L.; Xu, W.; Cao, L.* Tetraphenylethene-Based Tetracationic Dicyclophanes: Synthesis, Mechanochromic Luminescence, and Photochemical Reaction. Chem. Commun. 2020, 56, 3195-3198.
https://doi.org/10.1039/d0cc00860e
30. Li, C.; Nian, H.; Dong, Y.*; Li, Y,; Zhang, B.; Cao, L.* Tetraphenylethene-Based Platinum(II) Bis-Triangular Dicycles with Tunable Emissions. Inorg. Chem. 2020, 59, 5713-5720.
https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c00505
29. Li, C.; Zhang, B.; Dong, Y.*; Li, Y.; Wang, P.; Yu, Y.; Cheng, L.; Cao, L.* A Tetraphenylethene-Based Pd2L4 Metallacage with Aggregation-Induced Emission and Stimuli-Responsive Behavior. Dalton Trans. 2020, 49, 8051-8055.
https://pubs.rsc.org/en/content/articlelanding/2020/DT/D0DT00469C#!divAbstract
28. Li, Y.; Dong, Y.; Cheng, L.; Qin, C.; Nian, H.; Zhang, H.; Yu, Y.; Cao, L.* Aggregation-Induced Emission and Light-Harvesting Function of Tetraphenylethene-Based Tetracationic Dicyclophane. J. Am. Chem. Soc. 2019, 141, 8412-8415
https://doi.org/10.1021/jacs.9b02617
27. Cao, L.*; Wang, P.; Miao, X.; Duan, H.; Wang, H.; Dong, Y.; Ma, R.; Zhang, B.; Wu, B.; Li, X.; Stang, P. J. Diamondoid Frameworks via Supramolecular Coordination: Structural Characterization, Metallogel Formation, and Adsorption Study. Inorg. Chem. 2019, 58, 6268-6275.
https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b00484
26. Cheng, L.; Zhang, H.; Dong, Y.; Zhao, Y.; Yu, Y.; Cao, L.* Tetraphenylethene-Based Tetracationic Cyclophanes and Their Selective Recognition for Amino Acids and Adenosine Derivatives in Water. Chem. Commun. 2019, 55, 2372 - 2375.
https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc00599d
25. Zhang, B.; Dong, Y.; Li, J.; Yu, Y.; Li, C.; Cao, L.* Pseudo[n,m]rotaxanes of Cucurbit[7/8]uril and Viologen-Naphthalene Derivative: A Precise Definition of Rotaxane. Chin. J. Chem. 2019, 37, 262-275.
https://onlinelibrary.wiley.com/doi/10.1002/cjoc.201800562
24. 李亚雯; 敖宛彤; 金慧琳; 曹利平* 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光, 化学进展, 2019, 31,121-133.
https://manu56.magtech.com.cn/progchem/CN/abstract/abstract12175.shtml
23. Cao, L.*; Wang, P.; Miao, X.; Dong, Y.; Wang, H.; Duan, H.; Yu, Y.; Li, X.; Stang, P. J.* Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages. J. Am. Chem. Soc. 2018, 140, 7005-7011.
https://pubs.acs.org/doi/10.1021/jacs.8b03856
22. Li, Y.; Dong, Y.; Miao, X.; Ren, Y.; Zhang, B.; Wang, P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L.* Shape-Controllable and Fluorescent Supramolecular Organic Frameworks through Aqueous Host–Guest Complexation. Angew. Chem., Int. Ed., 2018, 57, 729-733.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201710553
21. Yu, Y.; Li, Y.; Wang, X.; Nian, H.; Wang, L.; Zhao, Y.; Li, J.; Yang, X.; Liu, S.*; Cao, L.* Cucurbit[10]uril-based [2]Rotaxane: Preparation and Supramolecular Assembly-Induced Fluorescence Enhancement. J. Org. Chem. 2017, 82, 5590-5596.
http://pubs.acs.org/doi/pdfplus/10.1021/acs.joc.7b00400
20. Wang, P.; Wu, Y.; Zhao, Y.; Yu, Y.; Zhang, M.*; Cao, L.* Crystalline Nanotubular Framework Constructed by Cucurbit[8]uril for Selective CO2 Adsorption. Chem. Commun. 2017, 53, 5503-5506.
http://pubs.rsc.org/en/content/articlepdf/2017/cc/c7cc02074k
19. Li, J.; Zhao, Y.; Dong, Y.; Yu, Y.; Cao, L.*; Wu, B. Supramolecular Organic Frameworks of Cucurbit[n]uril-Based [2]Pseudorotaxanes in the Crystalline State. CrystEngComm, 2016, 18, 7929-7933.
http://pubs.rsc.org/en/content/articlepdf/2016/ce/c6ce01320a
18. Dong, Y.; Cao, L.* Functionalization of Cucurbit[n]uril. Progress in Chemistry,(化学进展) 2016, 28, 1039-1053.
https://manu56.magtech.com.cn/progchem/CN/10.7536/PC160320
17. Li, J.; Yu, Y.; Luo, L.; Li, Y.; Wang, P.; Cao, L.*; Wu, B. Square [5]Molecular Necklace Formed from Cucurbit[8]uril and Carbazole Derivative. Tetrahedron Lett. 2016, 57, 2306-2310.
https://www.sciencedirect.com/science/article/pii/S0040403916304105?via%3Dihub
16. Yu. Y.; Li, J.; Zhang, M.; Cao, L.*; Isaacs, L.* Hydrophobic Monofunctionalized Cucurbit[7]Uril Undergoes Self-Inclusion Complexation and Forms Vesicle-Type Assemblies. Chem. Commun. 2015, 51, 3762-3765.
http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc00236b
博士后期间工作(2011-2014):
15. Sigwalt, D.; Sekutor, M.; Cao, L.; Zavalij, P. Y.; Hostas, J.; Ajani, H.; Hobza, P.; Mlimaric-Majerski, K.*; Glaser, R.*; Isaacs, L.* Unraveling the Structure-Affinity Relationship between Cucurbit[n]urils (n = 7, 8) and Cationic Diamondoids. J. Am. Chem. Soc. 2017, 139, 3249-3258. (SCI, IF = 13, 一区top)
14. Cao, L.; Skalamera, D.; Zavalij, P. Y.; Hobza, P.*; Mlinarić-Majerski, K.*; Glaser R.*; Isaacs, L.* Influence of Hydrophobic Residues on the Binding of CB[7] toward Diammonium Ions of Common Ammonium•••ammonium Distance. Org. Biomol. Chem. 2015, 13, 6249-6254. (SCI, IF = 3.5)
13. Cao, L.; Šekutor, M.; Zavalij, P. Y.; Mlinarić-Majerski, K.*; Glaser R.*; Isaacs, L.* Cucurbit[7]uril.Guest Pair with an Attomolar Dissociation Constant. Angew. Chem., Int. Ed. 2014, 53, 988-993. (SCI, IF = 13.4, VIP paper and Poster of the frontispiece, 一区top)
12. Zhang, M.#; Cao, L.# (共同第一作者); Isaacs, L.* Cucurbit[6]Uril-Cucurbit[7]Uril Heterodimer Promotes Controlled Self-Assembly Of Supramolecular Networks And Supramolecular Micelles By Self-Sorting Of Amphiphilic Guests. Chem. Commun. 2014, 50, 14756-14759. (SCI, IF = 6.7, 一区)
11. Cao, L.; Isaacs,L.* Absolute and Relative Binding Affinity of Cucurbit[7]uril Towards A Series of Cationic Guests. Supramol. Chem. 2014, 26, 251-258. (SCI, IF = 2.1)
10. Cao, L.; Hettiarachchi, G.; Briken, V.*; Isaacs, L.* Cucurbit[7]uril Containers for Targeted Delivery of Oxaliplatin to Cancer Cells. Angew. Chem., Int. Ed. 2013, 52, 12033-12037. (SCI, IF = 13.4, 一区top)
9. Vinciguerra, B.#; Cao, L.# (共同第一作者); Cannon, J. R.; Zavalij, P. Y.; Fenselau, C.; Isaacs, L.* Synthesis and Self-Assembly Processes of Monofunctionalized Cucurbit[7]uril. J. Am. Chem. Soc. 2012, 134, 13133-12140. (SCI, IF = 11.4, 一区top) (Spotlights on Recent JACS Publications, J. Am. Chem. Soc. 2012, 134, 14265-14266.)
8. Cao, L.; Isaacs, L.* Daisy Chain Assembly Formed from a Cucurbit[6]uril Derivative. Org. Lett. 2012, 14, 3072-3075. (SCI, IF = 6.3, 一区)
7. Lucas, D.; Minami, T.; Iannuzzi, G.; Cao, L.; Wittenberg, J. B.; Anzenbacher, Jr. P.*; Isaacs, L.* Templated Synthesis of Glycoluril Hexamer and Monofunctionalized Cucurbit[6]uril Derivatives. J. Am. Chem. Soc. 2012, 134, 13133-12140. (SCI, IF = 11.4)
博士期间工作(2006-2011):
6. Cao, L.; Wang, J. G.; Ding, J. Y.; Wu, A. X.*; Isaacs,L.* Reassembly Self-Sorting Triggered by Heterodimerization. Chem. Commun. 2011, 47, 8548-8550. (SCI, IF = 6.7, 一区)
5. Cao, L.; Meng, X. G.; Ding, J. Y.; Chen, Y. F.; Gao, M.; Wu, Y. D.; Li, Y. T.; Wu, A. X.*; Isaacs, L.* Nanotubular Non-Covalent Macrocycle Within Non-Covalent Macrocycle Assembly: (MeOH)(12) Encapsulated in Amolecular Clip Cyclododecamer. Chem. Commun. 2010, 46, 4508-4510. (SCI, IF = 6.7)
4. Cao, L.; Ding, J. Y.; Gao, M.; Wang, Z. H.; Li, J.; Wu, A. X.* Novel and Direct Transformation of Methyl Ketones or Carbinols to Primary Amides by Employing Aqueous Ammonia. Org. Lett. 2009, 11, 3810-3813. (SCI, IF = 6.3) (highlighted by Organic Chemistry Portal: http://www.organic-chemistry.org/abstracts/lit2/649.shtm; ChemInform, 2010, 41, DOI:10.1002/chin.201004082)
3. Cao, L.; Ding, J. Y.; Wang, J. G.; Chen, Y.; Gao, M.; Xue, W. J.; Wu, A. X.* Colorimetric Fluoride Sensor Based on a Bisthiourea Functionalized Molecular Clip. Synlett 2010, 2553-2556. (SCI, IF = 2.8)
2. Cao, L.; Ding, J. Y.; Yin, G. D.; Gao, M.; Li, Y. T.; Wu, A. X.* Thioglycoluril as a Novel Organocatalyst: Rapid and Efficient alpha-Monobromination of 1,3-Dicarbonyl Compounds. Synlett. 2009, 1445-1448. (SCI, IF = 2.8)
1. 曹利平; 高蒙; 李义涛; 丁娇阳; 吴彦东; 祝艳平; 佘能芳; 吴安心* 二元组装体集群时的高选择性杂化重组行为. 中国科学B辑: 化学, 2009, 39, 343-349. (国家核心期刊)
参与编写专著
1. Cao, L.; Zhao, J.; Yang, D.; Yang, X.-J.; Wu, B.* Hydrogen Bonding-Driven Anion Recognition in Hydrogen Bonded Supramolecular Structures. Springer-Verlag Berlin Herdelberg, 2015, DOI:10.1007/978-3-662-45756-6_5.
*通讯作者(Corresponding author)