和媛

个人信息:Personal Information

教授
博士生导师
硕士生导师

教师英文名称:Yuan He

教师拼音名称:heyuan

出生日期:1984-03-13

入职时间:2013-06-28

所在单位:化学与材料科学学院

职务:Professor

学历:博士研究生毕业

办公地点:化学与材料科学学院附楼333室

性别:女

联系方式:yuanhe@nwu.edu.cn

职称:教授

在职信息:在职

毕业院校:约克大学(英)

代表性科研成果

当前位置: 中文主页 >> 代表性科研成果

Zhou, Q., Catalán, P., Bell, H., Baumann, P., Cooke, R., Evans, R., Yang, J., Zhang, Z., Zappalà, D., Zhang, Y., Blackburn, G. M., He, Y. *, & Jin, Y. * (2023). An Ion-Pair Induced Intermediate Complex Captured in Class D Carbapenemase Reveals Chloride Ion as a Janus Effector Modulating Activity. ACS Cent. Sci. https://doi.org/doi.org/10.1021/acscentsci.3c00609

 

Zhang, Z., Dong, M. C., Zallot, R., Blackburn, G. M., Wang, N. N., Wang, C. J., Chen, L., Baumann, P., Wu, Z. Y., Wang, Z. F., Fan, H. M., Roth, C., Jin, Y. *, & He, Y. * (2023). Mechanistic and Structural Insights into the Specificity and Biological Functions of Bacterial Sulfoglycosidases. ACS Catal, 13, 824-836. https://doi.org/10.1021/acscatal.2c05405

 

He, Y., Chen, X., Zhang, Y., Wang, Y., Cui, M., Li, G., Liu, X., & Fan, H.* (2022). Magnetoresponsive nanozyme: magnetic stimulation on the nanozyme activity of iron oxide nanoparticles. Sci China Life Sci, 65(1), 184-192. https://doi.org/10.1007/s11427-020-1907-6

 

Jiao, W., Zhang, T., Peng, M., Yi, J., He, Y. *, & Fan, H.* (2022). Design of Magnetic Nanoplatforms for Cancer Theranostics. Biosensors, 12(1). https://doi.org/10.3390/bios12010038

 

Zhang, H., Guo, Y., Jiao, J., Qiu, Y., Miao, Y., He, Y., Li, Z., Xia, C., Li, L., Cai, J., Xu, K., Liu, X., Zhang, C., Bay, B. H., Song, S., Yang, Y., Peng, M., Wang, Y., & Fan, H. (2022). A hepatocyte-targeting nanoparticle for enhanced hepatobiliary magnetic resonance imaging. Nat Biomed Eng, 7(3), 221-235. https://doi.org/10.1038/s41551-022-00975-2

 

Liu, X. L., Zhang, Y. F., Guo, Y., Jiao, W. B., Gao, X., Lee, W. S. V., Wang, Y. Y., Deng, X., He, Y., Jiao, J., Zhang, C., Hu, G. Q., Liang, X. J., & Fan, H. M. (2021). Electromagnetic Field-Programmed Magnetic Vortex Nanodelivery System for Efficacious Cancer Therapy. Adv Sci, 8(18), e2100950. https://doi.org/10.1002/advs.202100950

 

Zhang, T. B., Li, G. L., Miao, Y. Q., Lu, J. J., Gong, N. Q., Zhang, Y. F., Sun, Y. T., He, Y., Peng, M. L., Liu, X. L., Liang, X. J., & Fan, H. M. (2021). Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials, 276, 121021. https://doi.org/10.1016/j.biomaterials.2021.121021.

 

Zhang, Y., Wang, Y., Zhou, Q., Chen, X., Jiao, W., Li, G., Peng, M., Liu, X., He, Y.*, & Fan, H. * (2021). Precise Regulation of Enzyme-Nanozyme Cascade Reaction Kinetics by Magnetic Actuation toward Efficient Tumor Therapy. ACS Appl Mater Interfaces, 13(44), 52395-52405. https://doi.org/10.1021/acsami.1c15717

 

Lei, J. E., Wang, Q., Lin, Y., Li, F., Ma, C., He, Y.*, & Xu, J. R.* (2020). Rapid detection of extended-spectrum beta-Lactamases producers in Enterobacteriaceae using a calorimetry approach. J Appl Microbiol, 130, 1523-1530. https://doi.org/10.1111/jam.14841


Wasey, A., Yang, J., Sun, D., He, Y.*, & Zhang, C.* 2020. On-chip Carba NP test for accurate and high throughput detection of carbapenemase-producing Enterobacteriaceae. Talanta, 210, 120656. doi: 10.1016/j.talanta.2019.120656


Liu, X., Yan, B., Li, Y., Ma, X., Jiao, W., Shi, K., Zhang, T., Chen, S., He, Y., Liang, X. J., & Fan, H. 2020. Graphene Oxide-Grafted Magnetic Nanorings Mediated Magnetothermodynamic Therapy Favoring Reactive Oxygen Species-Related Immune Response for Enhanced Antitumor Efficacy. ACS Nano, 14(2), 1936-1950. doi: 10.1021/acsnano.9b08320


Liu, X., Peng, M., Li, G., Miao, Y., Luo, H., Jing, G., He, Y., Zhang, C., Zhang, F., & Fan, H. 2019. Ultrasonication-Triggered Ubiquitous Assembly of Magnetic Janus Amphiphilic Nanoparticles in Cancer Theranostic Applications. Nano Lett, 19(6), 4118-4125. doi: 10.1021/acs.nanolett.9b01524


Peng, X., Wang, B., Yang, Y., Zhang, Y., Liu, Y., He, Y., Zhang, C., & Fan, H. 2019. Liver Tumor Spheroid Reconstitution for Testing Mitochondrial Targeted Magnetic Hyperthermia Treatment. ACS Biomater Sci Eng, 5(3), 1635-1644. doi: 10.1021/acsbiomaterials.8b01630


Xiong, R., Zhang, W., Zhang, Y., Zhang, Y., Chen, Y., He, Y.*, & Fan, H.* 2019. Remote and real time control of an FVIO-enzyme hybrid nanocatalyst using magnetic stimulation. Nanoscale, 11(39), 18081-18089. doi: 10.1039/c9nr04289j


Wang, Q., He, Y.*, Lu, R., Wang, W. M., Yang, K. W.*, Fan, H. M., Jin, Y., & Blackburn, G. M. 2018. Thermokinetic profile of NDM-1 and its inhibition by small carboxylic acids. Biosci Rep, 38(2). doi: 10.1042/BSR20180244


Xiang, Y., Chen, C., Wang, W. M., Xu, L. W., Yang, K. W.*, Oelschlaeger, P., & He, Y.* 2018. Rhodanine as a Potent Scaffold for the Development of Broad-Spectrum Metallo-beta-lactamase Inhibitors. ACS Med Chem Lett, 9(4), 359-364. doi: 10.1021/acsmedchemlett.7b00548


Zhang, H., Liu, X. L., Zhang, Y. F., Gao, F., Li, G. L., He, Y., Peng, M. L., & Fan, H. M. 2018. Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci, 61(4), 400-414. doi: 10.1007/s11427-017-9271-1


Zhang, Y., Lei, J. E., He, Y.*, Yang, J., Wang, W., Wasey, A., Xu, J.*, Lin, Y., Fan, H., Jing, G., Zhang, C., & Jin, Y. 2018. Label-Free Visualization of Carbapenemase Activity in Living Bacteria. Angew Chem Int Ed, 57(52), 17120-17124. doi: 10.1002/anie.201810834


Li, G., Ma, P., He, Y., Zhang, Y., Luo, Y., Zhang, C., & Fan, H.* 2018. Enzyme-Nanowire Mesocrystal Hybrid Materials with an Extremely High Biocatalytic Activity. Nano Lett, 18(9), 5919-5926. doi: 10.1021/acs.nanolett.8b02620


Wang, W. J., Wang, Q., Zhang, Y., Lu, R., Zhang, Y. L., Yang, K. W.*, Lei, J. E., & He, Y. * 2017. Characterization of beta-lactamase activity using isothermal titration calorimetry. Biochim Biophys Acta Gen Subj, 1861(8), 2031-2038. doi: 10.1016/j.bbagen.2017.04.011


Cekic, N., Heinonen, J. E., Stubbs, K. A., Roth, C., He, Y., Bennet, A. J., McEachern, E. J., Davies, G. J., & Vocadlo, D. J. 2016. Analysis of transition state mimicry by tight binding aminothiazoline inhibitors provides insight into catalysis by human O-GlcNAcase. Chem Sci, 7(6), 3742-3750. doi: 10.1039/c6sc00370b


Macauley, M. S., Kawasaki, N., Peng, W., Wang, S.-H., He, Y., Arlian, B. M., McBride, R., Kannagi, R., Khoo, K.-H., & Paulson, J. C. 2015. Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man. J Biol Chem, 290(50), 30066-30077. doi: 10.1074/jbc.M115.691337


Rillahan, C. D., Macauley, M. S., Schwartz, E., He, Y., McBride, R., Arlian, B. M., Rangarajan, J., Fokin, V. V., & Paulson, J. C. 2014. Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B Cell Lymphomas. Chem Sci, 5(6), 2398-2406. doi: 10.1039/C4SC00451E


He, Y., Roth, C., Turkenburg, J. P., & Davies, G. J. 2014. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase. Acta Crystallogr D Biol Crystallogr, 70(Pt 1), 186-195. doi: 10.1107/S1399004713029155


Darby, J. F., Landstrom, J., Roth, C., He, Y., Davies, G. J., & Hubbard, R. E. 2014. Discovery of selective small-molecule activators of a bacterial glycoside hydrolase. Angew Chem Int Ed, 53(49), 13419-13423. doi: 10.1002/anie.201407081


Macauley, M. S., Chan, J., Zandberg, W. F., He, Y., Whitworth, G. E., Stubbs, K. A., Yuzwa, S. A., Bennet, A. J., Varki, A., Davies, G. J., & Vocadlo, D. J. 2012. Metabolism of vertebrate amino sugars with N-glycolyl groups: intracellular beta-O-linked N-glycolylglucosamine (GlcNGc), UDP-GlcNGc, and the biochemical and structural rationale for the substrate tolerance of beta-O-linked beta-N-acetylglucosaminidase. J Biol Chem, 287(34), 28882-28897. doi: 10.1074/jbc.M112.363721


He, Y., Bubb, A. K., Stubbs, K. A., Gloster, T. M., & Davies, G. J. 2011. Inhibition of a bacterial O-GlcNAcase homologue by lactone and lactam derivatives: structural, kinetic and thermodynamic analyses. Amino Acids, 40(3), 829-839. doi: 10.1007/s00726-010-0700-6


He, Y., Macauley, M. S., Stubbs, K. A., Vocadlo, D. J., & Davies, G. J. 2010. Visualizing the reaction coordinate of an O-GlcNAc hydrolase. J Am Chem Soc, 132(6), 1807-1809. doi: 10.1021/ja9086769


Martinez-Fleites, C., He, Y., & Davies, G. J. 2010. Structural analyses of enzymes involved in the O-GlcNAc modification. Biochim Biophys Acta, 1800(2), 122-133. doi: 10.1016/j.bbagen.2009.07.019


Macauley, M. S., He, Y., Gloster, T. M., Stubbs, K. A., Davies, G. J., & Vocadlo, D. J. 2010. Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes. Chem Biol, 17(9), 937-948. doi: 10.1016/j.chembiol.2010.07.006


Marcelo, F., He, Y., Yuzwa, S. A., Nieto, L., Jimenez-Barbero, J., Sollogoub, M., Vocadlo, D. J., Davies, G. D., & Bleriot, Y. 2009. Molecular basis for inhibition of GH84 glycoside hydrolases by substituted azepanes: conformational flexibility enables probing of substrate distortion. J Am Chem Soc, 131(15), 5390-5392. doi: 10.1021/ja809776r


He, Y., Martinez-Fleites, C., Bubb, A., Gloster, T. M., & Davies, G. J. 2009. Structural insight into the mechanism of streptozotocin inhibition of O-GlcNAcase. Carbohydr Res, 344(5), 627-631. doi: 10.1016/j.carres.2008.12.007


Balcewich, M. D., Stubbs, K. A., He, Y., James, T. W., Davies, G. J., Vocadlo, D. J., & Mark, B. L. 2009. Insight into a strategy for attenuating AmpC-mediated beta-lactam resistance: structural basis for selective inhibition of the glycoside hydrolase NagZ. Protein Sci, 18(7), 1541-1551. doi: 10.1002/pro.137


Martinez-Fleites, C., Macauley, M. S., He, Y., Shen, D. L., Vocadlo, D. J., & Davies, G. J. 2008. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat Struct Mol Biol, 15(7), 764-765. doi: 10.1038/nsmb.1443


Yuzwa, S. A., Macauley, M. S., Heinonen, J. E., Shan, X., Dennis, R. J., He, Y., Whitworth, G. E., Stubbs, K. A., McEachern, E. J., Davies, G. J., & Vocadlo, D. J. 2008. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol, 4(8), 483-490. doi: 10.1038/nchembio.96


Wang, Z.-F., He, Y., & Huang, L.-J. 2007. An alternative method for the rapid synthesis of partially O-methylated alditol acetate standards for GC-MS analysis of carbohydrates. Carbohydr Res, 342(14), 2149-2151. doi: 10.1016/j.carres.2007.05.028