研究领域:物理光学,统计光学,大气光学
研究方向:光场调控与传输
不是一番寒彻骨,怎得梅花扑鼻香
招生:每年物理学博士生1名,硕士生1名;专硕1-2名(长期有效)。本课题组提供宽松、和谐、欢乐的研究氛围,欢迎勤奋、踏实、上进的同学选报,混学位的请绕道!
代表作:
[23].A. Xiang, Z. Zhang, T. Jiang, G. Wu*, L. Hang, and Y. Cai, “Composite photonic lattice with a broad channel to sustain topological interface states,” Opt. Express 32(15), 26082-26093(2024).
[22].D. Wu, H. Wang, F. Wang, G. Wu*, X. Zhu, and Y. Cai, “Breaking the symmetric spiral spectrum distribution of a Laguerre-Gaussian beam propagating in moderate-to-strong isotropic atmospheric turbulence,” Opt. Express 32(2), 1701-1714(2024).
[21].Aiqian Yu,G. Wu*, “Self-healing properties of optical pin beams,” J. Opt. Soc. Am. A, 40(11), 2078-2083(2023).(editors` pick )
[20].G. Wu, J. Liang, F. Wang and Y. Cai, “Generation of non-uniformly correlated sources with controllable beam profile by devising its statistics in spatial frequency domain” Opt. Lett. 48(9), 2413-2416(2023).
[19].J. Cao,L. Han, H. Liang and G. Wu*, and X. Pang “Orbital angular momentum spectrum of pin-like optical vortex beams in turbulent atmosphere,” J. Opt. Soc. Am. A, 39, 1414-1419(2022).
[18].G. Wu, H. Wang, F. Wang and Y. Cai, “Rotation of degree of coherence and redistribution of transverse energy flux induced by non-circular degree of coherence of twisted partially coherent sources,” Opt. Express 30(3), 3913-3925(2022).
[17]. A Leinonen, K Saastamoinen, H Pesonen, G. Wu, T. D. Visser, J. Turunen, and A. T. Friberg “Generalized Hanbury Brown–Twiss effect in partially coherent electromagnetic beams,” Phys. Rev. A, 104, 043503 (2021).
[16].Y. Zhou, G. Wu*, Y. Cai, F. Wang and B. J. Hoenders, “Application of self-healing property of partially coherent beams to ghost imaging,” Appl. Phys. Lett., 117,171104,(2020).
[15]. G. Wu, D. Kuebel and T. D. Visser*, “Generalized Hanbury Brown–Twiss effect in partially coherent electromagnetic beams,” Phys. Rev. A, 99, 033846 (2019).
[14]. M. Zhou,Y. Zhou,G. Wu* and Y. Cai*, “Reducing the cross-talk among different orbital angular momentum modes in turbulent atmosphere by using a focusing mirror,” Opt. Express, 27, 10280-10287 (2019).
[13]. G. Wu, M. Zhou,Y. Zhou and Y. Cai*, “Propagation and radiation forces of a partially coherent beam generated by a quasi-homogeneous source with defect,” J. Quant. Spectrosc. Ra., 224, 171-175 (2019).
[12].M. Zhou,W. Fan and G. Wu*, “Evolution properties of the orbital angular momentum spectrum of twisted Gaussian Schell-model beams in turbulent atmosphere,” J. Opt. Soc. Am. A, 37, 142-148(2019).
[11]. G. Wu and C. Tao,“Analytical study of the self-reconstruction of a partially coherent Gaussian Schell-model beam,” Opt. Comm., 424, 86-90(2018).
[10]. G. Wu and X. Pang*, “Self-healing properties of partially coherent Schell-Model beams,” IEEE Photonics J., 9, 1-11 (2017).
[9]. G. Wu*, “Propagation properties of a radially polarized partially coherent twisted beam in free space,” J. Opt. Soc. Am. A, 33,345-350(2016).
[8]. G. Wu, F. Wang and Y. Cai*, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A, 89, 043807 (2014).
[7]. G. Wu and T. D. Visser*, “Hanbury Brown–Twiss effect with partially coherent electromagnetic beams,” Opt. Lett., 39, 2561-2564 (2014).
[6].G. Wu and T. D. Visser*, “Correlation of Intensity Fluctuations in Beams Generated by Quasi-homogeneous Sources,” J. Opt. Soc. Am. A, 31, 2152-2159(2014).
[5]. G. Wu, F. Wang and Y. Cai*, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express, 20, 28301-28317 (2012).
[4]. G. Wu and Y. Cai*, “Detection of a semi-rough target in turbulent atmosphere by a partially coherent beam,” Opt. Lett., 36, 1939-1941 (2011).
[3]G. Wu and Y. Cai*, “Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam,” Opt. Express, 19, 8700-8714 (2011).
[2]. G. Wu, Y. Cai* and J. Chen, “Shaping the beam profile of a partially coherent beam by a phase aperture,” Opt. Comm., 284, 4129-4135 (2011).
[1].F. Wang, G. Wu, X. Liu, S. Zhu and Y. Cai*, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett., 36, 2722-2724 (2011).